CHALLENGES IN
POINTER ANALYSIS
OF JAVASCRIPT

Ben Livshits

MSR

o,

7.9* Caold Enough For The Ugly Coat @
By o

the ONION'

America’s Finest News Source

AV CLUB (v |

VIDED POLITICS SPORTS BUSINESS SCIEMCE/TECH ENTERTAINMENT LOCAL Q, search
C# :
q .
aeend JAVASCript
80~ Visual Basic Perl
Delphi R
Matlab shell
PowerShell
ASP
&HidFusiun
= Lua
| Prolog CoffeeScript
. AppleScript t e
% Go Emacs Lisp
':: XQuery D
2 Apex
: yula
: I
& Self Standard ML
5 AggHotkey
E 4 Rebol
i Puppet
=
é oﬁ—aactcr
&
Scilab
Max ,
DCPU-16 ASM it Aust
Parrot Tur Us
uring
) SuperCollider
Gosu
Nu
oC Common Lisp
ooe Pure Data VimL

| ' '
0 a0
Popularity Rank on GitHub (by # of Projects)

Two Issues in

JavaScript Pointer
Analysis

Gulfstream

* JavaScript programs on
the web are streaming

* Fully static analysis
pointer analysis is not
possible, calling for a
hybrid approach

e Setting: analyzing pages
before they reach the
browser

Use analysis

e JavaScript programs
interop with a set of
reach APIs such as the
DOM

e We need to understand
these APIs for analysis to
be useful

e Setting: analyzing Win8
apps written in JavaScript

Gulfstream

- Staged Static Analysis for
treaming JavaScript
plications, Salvatore
uarnieri, Ben Livshits,
WebApps 2009

GULFSTREAM: Staged Static Analysis for
Streaming JavaSeript Applications

Salvatore Guarnieri
University of Washington

Abstract

The sdvent of Web 20 has led to the proliferation of
client-side code that is typically written in JavaScript.
Recenily, there has been an upsurge of inierest in static
lysis of client-side ipit for bcations such as
bug finding However, most
in static analysis literature assume that the enrire pro-
gram is available w analysis. This. however, is in di-
rect contradiction with the nature of Web 2.0 programs
that are essentially being streamed at the user’s browser.
Users can see data being streamed to pages in the form
of page updates, but the same thing can be done with
code, essentially delaying the downloading of code until
itis needed. In essence, the entife program is never con-
pletely available. Interacting with the application causes
more code to be sent 1o the browser.

This paper explores staged static analyis as a way
o analyze streaming JavaScript programs. We observe
while there is variance in terms of the code that gets sent
o the client. much of the code of a typical JavaSeript
application can be determined statically. As a result, we
advocate the use of combined offlineg-onling static analy-
515 a5 away lish fast, brow ser-based client-side
online analysis at the expense of a more thorough and
costly server-based offling analysis on the swatic code.
We find that in normal use, where updates to the code
are small, we can updste static analysis results quickly
enough in the browser 1 be acceptable for everyday use.
We demonstrate the staged analysis approach o be ad-
vantageous especially in mobile devices. by experiment-
ing on popular applications such as Facebook.

1 Intreduction

The sdvent of Web 20 has led to the proliferation of
client-side code that is typically written in

Benjamin Livshits
Microsaft Research

ing the application only fully available within the user’s
browser. Recently. there has been an upsurge of inter-
st in static analysis of client-side JavaScript. However,
most approsches in the static analysis literare assume.
that the entire program is available for analysis. This,
however. is in direet contradiction with the nawre of
Web 2.0 programs that are essentially being streammed 1o
the user’s browser. In essence, the JavaScript application
s never available in its entirety: as the user interacts with.
the application. more code is sent to the browser.

A pattern that emerged in our experiments with static
analysis to enforce security properties [14], is that while
mest of the application can be analyzed offline, some
paris of it will need o be analyzed on-demand, in the
browser. In one of our experiments, while 157 KB (T1%)
of Facebook JavaScript code is downloaded right away,
an additional 62 KB of code is downloaded when visit-
ing event pages, etc. Similarly, Bing Maps downloads
maost of the code right away: however, requesting taf-
fic requires additional code downloads. Moreover, ofien
the pans of the application that are downloaded later are
composed on the client by referencing a thisd-party li-
brary at a fixed CDN URL: common libraries are jQuery
and protetype js. Since these libraries change rela-
tively frequently, analyzing this code ahead of time may
be inefficient or even impossible.

The dynamic nature of JavaScript. combined with the
incremental nature of code downloading in the browser
leads to some unique challenges. For instance, consider
the piece of HTML in Figure 1. Suppose we want to
statically determine what code may be called from the
onelick handler o ensure that none of the invoked func-
tions may block. If we only consider the fisst SCRIPT
block, we will conclude that the eneliek handler may
only call function foo. Including the second SCRIPT
block adds function bar a5 a possible function that may

This code is often combined or mashed-up with other
code and content from different third-party servers, mak-

be called. F if the browser proceeds to down-
load more code, either through more SCRIPT blocks or
IzlHttpRequests, more code might need to be consid-

Whole program
analysis?
What whole program?

(o e Né] Facebook —

\j/L:I' [’E\] [’_\ZI 'Z/?\] -_'] B @ I.\ http: / jwww.facebook.com/home.php Y

|~ ‘O Recently Bookmarked ~

| Facebook I + l
facebook

. Events See All
Salvatore Guarnieri = News Feed Top News - Most Recent
Edit My Profile
What ar
- What's on your mind?
[:] MNews Feed : .-‘E 2 event invitations

A a . . . Help People With Cancer/Half Marathon
=) Messages Jonathan Hsieh makerbot fail. power source is doa. why does . ! k !

Attempt
frys close so early?!
Sl e B !J\d_‘!‘r'—! EP;?'ISS m Comment - Like SR e s B Rl] E@LNEQ MacFarland MCCUiQa:_'.su 1l
CET 1rlyly26.js static.ak.fbcdn.net 2 KB N
17 requests 122 KB 1
T
hr
Cone
GET 7p2ejwta.js static.ak.fbcdn.net 9 KB 111ms
GET 32skycfm.js static.ak.fbcdn.net 10.2 KB 33ms
GET 7i5Iryno.js static.ak.fbcdn.net 2.9 KB 743ms
GET dloheSac.js static.ak.fbcdn.net 3.5 KB 16ms
GET 4yghkao8.js static.ak.fbcdn.net 8.2 KB 53ms
GET 813zahvz.js static.ak.fbcdn.net 31.3 KB 128ms
GET astdkvf2.js static.ak.fbcdn.net 13.7 KB 66ms
GET 6cbOlgek.js static.ak.fbcdn.net 9.6 KB 65ms
GET 8bkgvdke.js static.ak.fbcdn.net 5.4 KB 79ms
GET 43kzei94.js static.ak.fbcdn.net 530 B 12ms
GET 97dnbrio.js static.ak.fbcdn.net 11 KB 36ms
GET 34fulqdg.js static.ak.fbcdn.net 7.5 KB 259ms
GET lhgnrwkd.js static.ak.fbcdn.net 4.2 KB 35ms
GET 7c5lvnd6.js static.ak.fbcdn.net 5278 18ms
GET 7q88hxyg.js static.ak.fbcdn.net 622 B 28ms
CET 5Svjds43u.js static.ak.fbcdn.net 1.6 KB 27ms
GET 1rlyly26.js static.ak.fbcdn.net 2 KB 17ms
17 requests 122 KB 1.11= (onload: 1.7s)

Cone & w0

JavaScript programs are streaming

Facebook Code Exploration

Page visited or Added JavaScript KININIEERINNINERIERENRIRTE
action performed files KB -
FACEBOOK FRONT PAGE e
Home page 19 157 s
Friends 7 186
Inbox 1 206
Profile 1 219

. - S
OWA Code Exploration

2,500 - ——

2,000 -

OUTLOOK WEB ACCESS (OWA)

Inbox page 7 1,680 -
Expand an email thread 1 95
Respond to email 2 134 ™% -
New meeting request 2 168

500

Inbox page Expand an email thread Respond to email New meeting request

.. .e.Ad-
Script Creation

<HTML>
<HEAD>
<SCRIPT>
function foo(){...}

var ¥ = foo;

What does f
refer to?

<SCRIPT>
function bar(){...}
if (...) f = bar;
</SCRIPT>
</HEAD>
<BODY onclick="f();"> ...</BODY>
</HTML>

=/

B
Plan

Server Client

* Pre-compute pointer
information offline, for most

of the program - When more code is

discovered, do analysis of it

- Combine the incremental
results with pre-computed

- Optionally update server results
knowledge as more code is
observed

Gulfstream In Action

Is it faster to

I 1) transfer pre-computed results +
add incremental results
2) Compute everything from scratch

Checking a safety property

Simulated Devices

Configuration CPU Link La
ID Name coef. c type L
1 Gl 67.0 EDGE
2 Palm Pre 36.0 | Slow 3G
3 iPhone 3G 36.0 Fast 3G
4 iPhone 3GS 3G 15.0 | Slow 3G
5 1Phone 3GS WiFi 15.0 | Fast WiFi
6 MacBook Pro 3G 1 Slow 3G
7 MacBook Pro WiFi 1 Slow WiFi
8 Netbook 2.0 Fast 3G
9 Desktop WiFi 0.8 | Slow WiFi
10 Desktop T1 0.8 Tl

15

Try Different Configurations

Graph Incremental Settings o .

Graph Size [1 2 3 4.5 678 9 10 - Slow devices benefit from

6,914 8|+ + + + +|- + + - +

7,608 619 |+ + + + +|- - + - +

8,332 LIBB [+ + + + +|- - + - + G u IfSt rea m

11,045 ledd |+ + + + +|- - - - +

9,400 2186 |+ + + + + |- - + - +

10,058 2067 |+ + + + +|- - - - +

12,846 3293 |+ + + + +|- - - - +

11,269 3846 |+ + + + +|- - - - +

/Ryl DDA - A slow network can negate the
12,578 508+ + + + + |- - - - + . .
9526 530 |+ 4+ 4 +lo - - - benefits of the staged analysis
13,788 6,087 |+ + + + + |- - - - +

14,447 6668 |+ + + + + |- - - - +

15,095 T249 |+ + + + + |- - - - +

15,751 T80 |+ + + + +|- - - - +

16,306 8333 |+ + + + +|- - - - + P .
16,866 886l |+ + + + +|- - - - + °

logss BB e Large page updates don’t benefit
17.969 9917 |+ + + + +|- - - - +

18,520 10445 |+ + + = +|=- = = - + from GUIfStream

19,075 10973 |+ + + + |- - - - %

19,633 11,501 [+ + + + |- - - - +

20,184 12,029 |+ + + + |- - - - +

20,750 12,557 |- - + .

34,570 14816 | +

zew leass -1 “+” means that staged incremental analysis

BOse 17909 - s advantageous compared to full analysis on

35.945 25566 |- | the client.

17,108 31,465 | - |

Gulfstream Savings: Fast Devices

10 seconds
saved

12

10

W profile
(7]
T M inbox
9 6)
] M friends
(Vs]

W home

4

Gulfstream Savings: Slow Devices

350

300

250 -

Seconds

100 -

50 -

0 .

200 -

150 -

W profile
M inbox
M friends

M home

Laptop Running Time Comparison

Seconds
OO r N W b U1 O N

e==Gulfstream e= Full Analysis ee¢+ bddbddb

4 Break even point:

After 30KB of updates, _
incremental Gulfstream is no

longer f r
_ onger faste

40 45 50 55 60 65
Total Page Size (KB)

Conclusion

- Gulfstream, staged analysis for JavaScript
- WebApps 2010

- Staged analysis
- Offline on the server
* Online in the browser

- Wide range of experiments
« For small updates, Gulfstream is faster
- Devices with slow CPU benefit most

Pointer Analysis
and Use Analysis

e
Use Analysis

* Practical Static Analysis
of JavaScript Applications

- in the Presence of

Practical Static Analysis of JavaScript Applicati
Frameworks and ctcal Static Analysis of JavaScript Applications
lerarles’ M adsen' Aarhus University Microsoft Research Microsoft Corporation

Livshits, Fanning, in
submission, 2013

Microsoft Research Technical Report
MSR-TR-2012-66

Microsoft*

Research

Motivation:
Win8 App Store

Native C/C++ apps
.NET aps
JavaScript/HTML apps

- B
Win8 & Web Applications

/

Windows 8 App L Web App J

_

Builtin | | DOM | | Winis || wing | | Builtin || Dom | [jauery |[.. |
Name Lines Functions Alloc. sites Fields
Builtin 225 161 1,039 190
DOM 21,881 12,696 44 947 1,326
WinJS 404 346 1,114 445
Windows &8 API 7,213 2,970 13,989 3,834
Total 29,723 16,173 61,089 5,795

Practical Applications

- Call graph discovery

- APl surface discovery

- Capability analysis

- Auto-complete

- Concrete type inference
* Runtime optimizations

Practical Applications

- Call graph discovery

. Windows.Devices.Sensors
- API surface discovery Windows .Devices.Sms

- Capability analysis Windows.Media.Capture

Windows.Networking.Sockets
- Auto-complete

- Concrete type inference
* Runtime optimizations

Practical Applications

- Call graph discovery

- APl surface discovery

- Capability analysis

- Auto-complete

- Concrete type inference
* Runtime optimizations

<Package ¥mlns="http://schemas.microsoft.c
<Identity Hame="5leleldc-8lad-4bi0-964a-
<Properties>
<DisplayNamer>...</DisplayNams:>
<Descriptiony...</Descriptions
= /Propertiss>
<Capabilities>
<Capability Name="videosLibrary" />
<Capability Hame="pictureslikrary" />
<Capakbility Hame="internetClient" />
<DeviceCapabilitcy Wame="weboam" />
</Capabilitcies>
< /Package>

Practical Applications

¢ Ca” graph discovery Winl5.Namespace.define("Game.Audic”,
] .{play: function() {}, wolume: function() {}}
- APl surface discovery eime. Audio.volune(50)
. . IIEE.mlE.J!nuq:I:i.q:l.[,gr
- Capability analysis No Default Proposals

- Auto-complete
- Concrete type inference

¢ Ru ntime Optimizations Press "Cirl+5pace’ to show Template

Practical Applications

- Call graph discovery function Node(left, right) {

- APl surface discovery ::i:ﬁi;;:—":@“j

- Capability analysis this.left = left;
this.right = right;

+ Auto-complete 1
- Concrete type inference var 1 = new Node(null, null);
- Runtime optimizations var r = new Node(null, null);

var p = new Node(l, r);

Practical Applications

- Call graph discovery function Node(left, right) {

- APl surface discovery ::i:ﬁ:f;:_ :FD ;

- Capability analysis this.left = left;
this.right = right;

- Auto-complete }
- Concrete type inference

- Runtime optimizations

str int ref ref

memory layout

Canvas Dilemma

var canvas = document.querySelector("#leftcol .logo");
var context = canvas.getContext("2d");
context.fillRect(20, 20, c.width / 2, c.height / 2);
context.strokeRect(0, 0, c.width, c. height);

- model querySelector as - Model querySelector as
returning a reference to returning any HTML element
HTMLElement:prototype within underlying page

- However, - Returns elements on which
HTMLElement:prototype does getContext is undefined
not define getContext, so
getContext remains unresolved

Introducing Use Analysis

funetion handleBEvent(event)

var =lm = document.querySelector ("#player wvideo");

(event. Code == 80) { / ser pressed 'p ey

f(=1mlY =

elm flows into
) d ' reset

elm flows into
playVideo

elm must have: elm must have:
muted and play pause
function playVideo (slm) { function reset{elm) 1
if (elm.muted) { elm.pause () ;
glm.volume = B80; elm.seekable = 0;
I }

elm.play();

Pointer vs. Use Analysis

- Pointer analysis deals
with “concrete” facts

- Facts we can observe

-variables declared in the
p ro g ram use analysis

- allocation sites

Pointer vs. Use Analysis

use analysis

- Use analysis deals with the
“invisible” part of the heap

- |t can exist entirely outside
the JavaScript heap

» Constraints flows from callers
to callees

Promises

driveUtil.uploadFilesAsync(
server.imagesFolderlId).
then(function (results) {...}))

analysis correctly maps then to
WinJ]S:Promise:prototype.then

Local Storage

var json =
Windows.Storage.
ApplicationData.current.
localSettings.values[key];

correctly resolves 1localSettings to an instance of
Windows:Storage:ApplicationDataContainer

Benchmarks

Alloc. Call
Lines Functions sites sites Fields Variables
245 11 128 113 231 470
345 74 606 345 298 1,749
402 27 236 137 208 769
434 51 282 . —— ——
53

25 Windows 8 Apps:

Average 1,587 lines of code
Approx. 30,000 lines of stubs

2,524 228

3,150 161

3,189 244 2,333 6,207
3,243 108 1,654 740 515 4,517
3,638 305 2,529 1,153 537 7,139
6,169 506 3,682 2,994 725 12,667
1,587 134 1,147 631 442 3,511

- R
Evaluation: Summary

- The technique improves call graph resolution
- Unification is both effective and precise

- The technique improves auto-completion compared
to what is found in four widely used IDEs

- Analysis completes in a reasonable amount of time

Call Graph Resolution

Median baseline .
resolution is 71.5% &
o 3 -
= l i
.
_ _ _ baseline_ _ _
10 -
Median partial
resolution is 81.5% °
e '
F 5
’ 0-50% | 50-60% 60-70% 70-80% 80-90% 90-100%

partial inference

s
Validating Results

- Incomplete is # of call sites

Q

%g 3 which are sound, but have

g 22 2z - some spurious targets (i.e.

\ § 2EE % imprecision is present)

App OsPP n B - Unsound is the number of
appl 16 120 1 20 call sites for which some
ZEE§ S Gl call targets are missing (i.e.
appd 13 410 2 20 the set of targets is too
app5 13 401 2 20 small)
20 000 0 2 - Stubs is the number of call
app8 12 501 2 20 sites which were
app9 12 500 3 20 unresolved due to missing
appl0 11 403 2 20 or faulty stubs.
Total 13535 4 521 200

Auto-complete

- We compared our technique to the auto-complete in four
popular IDEs:
- Eclipse for JavaScript developers
- IntelliJ IDEA
- Visual Studio 2010
- Visual Studio 2012

- In all cases, where libraries were involved, our technique was
an improvement

e
Auto-complete

Eclipse Intellid VS 2010 | V5 2012

Category Code v # | v #F | # v #*
PARTIAL INFERENCE
var ¢ = document.getElementById("canvas™);
tx = c.getContext("24");
! DOM Loop var ctx = c.getContext("2d"); x 0|V 35 | x 2% | v 1
var h = c.height:
var w = c.W_
var p = {firstName: "John".lastName : "Doe"};
funetion compare(pl, p2) {
= pl.firatN 2.firatN :
2 Callback var ¢ = pliirstiiame < pefirstiame; X 0|y 9| x 7l vk
if{e ! = 0) return ¢;
return pl.last
}
var pl = {firstName: “John”., lastName: "Doe” };
localStorage.putlten(”person”, pl)
3 Local Storage wvar p2 = localStorage.getIten("person”™): X 0| v a0+ | X T X 7
document.writeln("Mr.” + p2.lastName+
||:s: +P2-f._.}:

I'ULL INFERENCE
WinJ5.Namespace.define("Game.Audio”,
play: funetion() {}. volume : function() {}
4 Namespace B X 0| v a0+ | X 1| " k
Game.Audio. volume(50):
Game.Audio.p_,

war d = new Windows.UI.Popupa.MessageDialog():
var m = new Windows.UIL.

5 Paths

=1

X] X 250+ | X V' k

[} [J
Running Times
All benchmarks
. . complete within
20.0 1 | Median runtime for . Oiec
partial is 10.5 sec '
15.0 -
W
=]
S
S 10.0 -
5.0 -
Analysis is not
0.0 - .
N N N STONNMNMCHIWLMNNMO O 00 mcremental—room
gt <t O M 00 N < 4 N O N <t I~ 00 C
' I ' T~ o~ o~ o U T U T o N o o T = o I v o T w T s B i

= 2 o o forimprovement
benchmarks (lines of code)

Two Issues in
JavaScript Pointer Analysis

Gulfstream

JSCap

e JavaScript programs on the
web are streaming

* Fully static analysis pointer
analysis is not possible,
calling for a hybrid approach

» Setting: analyzing pages
before they reach the
browser

* JavaScript programs interop
with a set of reach APIs
such as the DOM

e We need to understand
these APIs for analysis to be
useful

e Setting: analyzing Win8
apps written in JavaScript

45

